Reconstructing hidden manifolds from metric data: a challenge for maths community

Eugene Stepanov (St. Petersburg Branch of Steklov Mathematical Institute)
Monday, 08 February 2021
конференц-зал, ауд.401 Moscow center for continuous mathematical education

Abstract. One of the important classes of problems frequently arising in applications of statistical data analysis can be informally stated as follows. Distances between data points taken from some (unknown) manifold are measured. Can one reconstruct this manifold or its embedding in a given (say, Euclidean) space knowing just the information on the distances? Can one get some information on its topology (e.g. Betti numbers, Euler characteristic etc)? Such problems are quite common to data science/big data and constitute what is nowadays known under the name ``manifold learning''. We will discuss these problems, their motivation from applications, as well as their ``close relatives'' from metric geometry and propose some methods for their solution.